Советы по строительству и ремонту

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, ). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно .

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, ). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема .

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Постоянные читатели часто интересуются, как правильно сделать питание для светодиодов, чтобы срок службы был максимален. Особенно это актуально для led неизвестного производства с плохими техническими характеристиками или завышенными.

По внешнему виду и параметрам невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.


  • 1. Основные типы
  • 2. Как сделать расчёт
  • 3. Калькулятор для расчёта
  • 4. Подключение в автомобиле
  • 5. Напряжения питания светодиодов
  • 6. Подключение от 12В
  • 7. Подключение от 1,5В
  • 8. Как рассчитать драйвер
  • 9. Низковольтное от 9В до 50В
  • 10. Встроенный драйвер, хит 2016
  • 11. Характеристики

Основные типы

Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.

Если блок питания для светодиодов 12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость. И без повышения минимум до 3В диод не заработает.

Этих недостатков лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения ток остаётся постоянным.

Как сделать расчёт

  1. номинальная потребляемая мощность или желаемая;
  2. напряжение падения.

Суммарное энергопотреблением подключаемой электрической цепи не должно превышать мощности блока.

Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним. Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W. Это определяли по вольтамперной-характеристике.

К тому же у дешевых разброс параметров очень большой. Что бы это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.

Калькулятор для расчёта

Калькулятор учитывает 4 параметра:

  • количество вольт на выходе;
  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи.

Подключение в автомобиле

..

При заведенном двигателе бывает в среднем 13,5В — 14,5В, при заглушенном12В — 12,5В. Особые требования при включении в автомобильный прикуриватель или бортовую сеть. Кратковременные скачки могут быть до 30В. Если у вас используется токоограничивающее сопротивление, то сила тока возрастает прямо пропорционально повышению напряжению питания светодиодов. По этой причине лучше ставить стабилизатор на микросхеме.

Недостатком использования в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа . Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.

Напряжения питания светодиодов

Из таблиц видно, для маломощных на 1W, 3W этот показатель 2В для красного, желтого цвета, оранжевого. Для белого, синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.

Таблица для LED на 1W, 3W, 5W

Таблица для мощных светодиодов 10W, 20W, 30W, 50W, 100W

Подключение от 12В

Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.

Пример на диоде 1 W, его номинальный ток 300мА.

  • Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
  • на резисторе будет 12В – 9,6В = 2,4В;
  • 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
  • 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
  • 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.

Аналогичным образом можно вычислить и для другого количества элементов в цепи.

Подключение от 1,5В

Источник питания для светодиодов может быть и простой пальчиковой батарейкой на 1,5В. Для LED диода требуется обычно минимум 3V, без стабилизатора тут никак не обойтись. Такие специализированные светодиодные драйвера используются в ручных фонариках на Cree Q5 и Cree XML T6. Миниатюрная микросхема повышает количество вольт до 3V и стабилизирует 700мА. Включение от 1.5 вольт при помощи токоограничивающего сопротивления невозможно. Если применить две батареи на 1.5 вольт, соединив их последовательно, получим 3В. Но батарейки достаточно быстро разряжаются, а яркость будет падать еще быстрее. При 2,5В емкости в батареях останется еще много, но диод уже практически потухнет. А светодиодный драйвер будет поддерживать номинальную яркость даже при 1В.

Обычно такие модули заказываю на Aliexpress, у китайцев стоят 50-100руб, в России они дороговаты.

Как рассчитать драйвер

  1. составьте на бумаге схему подключения;
  2. если драйвер китайский, то желательно проверить выдержит он заявленную мощность или нет;
  3. учитывайте, что для разных цветов (синий, красный, зеленый) разное падение вольт;
  4. суммарная мощность не должна быть выше, чем у источника тока.

Нарисуйте схему включения, на которой распределите элементы, если они подключены не просто последовательно, а комбинировано с параллельным соединением.

На китайском блоке питания неизвестного производителя мощность может быть значительно ниже. Они запросто указывают максимальную пиковую мощность, а не номинальную долговременную. Проверять сложнее, надо предельно нагрузить блок питания и замерить параметры.

Для третьего пункта используйте примерные таблицы для 1W,3W, 5W, 10W, 20W, 30W, 50W, 100W, которые приведены выше. Но больше доверяйте характеристикам, которые вам дал продавец. Для однокристальных бывает 3V, 6V, 12V.

Если энергопотребление цепи в сумме превысит номинальную мощность источника питания, то ток просядет и увеличится нагрев. Он восстановится до нормального уровня, если снизить нагрузку.

Для светодиодных лент сделать расчёт очень просто. Измерьте количество Ватт на 1 метр и умножьте на количество метров. Именно измерьте, в большинстве случаем мощность завышена и вместо 14,4 Вт/м получите 7 Вт/м. Ко мне слишком часто обращаются с такой проблемой разочарованные покупатели.

Низковольтное от 9В до 50В

Кратко расскажу, что использую для включения для блоков на 12В, 19V, 24В и для подключения к автомобильным 12В.

Чаще всего покупаю готовые модули на ШИМ микросхемах:

  1. бывают повышающие, например, на входе 12V, на выходе 22В;
  2. понижающие, например из 24В до 17В.

Не всем хочется тратить большую денежку на покупку готового прожектора для авто, светодиодного светильника или заказывать готовый драйвер. Поэтому обращаются ко мне, что бы из подручных комплектующих собрать что-нибудь приличное. Цена таких модулей начинается от 50руб до 300руб за модель на 5А с радиатором. Покупаю заранее по несколько штук, расходятся быстро.

Больше всех популярен вариант на линейной ИМС , простой, надежный устаревший.

Очень популярны модели на LM2596, но она уже устарела и советую обратить внимание на более современное с хорошим КПД. Такие блоки имеют от 1 до 3 подстроечных сопротивлений, которыми можно настроить любые параметры до 30В и до 5А.

Встроенный драйвер, хит 2016

В начале 2016 года стали набирать популярность светодиодные модули и COB диоды с интегрированным драйвером. Они включаются сразу в сеть 220В, идеальный вариант для сборки светотехники своими руками. Все элементы находятся на одной теплопроводящей пластине. ШИМ контроллеры миниатюрные, благодаря хорошему контакту с системой охлаждения. Тестировать надежность и стабильность еще не приходилось, первые отзывы появятся минимум через полгода использования. Уже заказал самую дешевую и доступную модель COB на 50W. Чтобы найти такие на китайском базаре Алиэкспресс, укажите в поиске «integrated led driver».

Характеристики

Глобальная проблема, это подделка светодиодов Cree и Philips в промышленных масштабах. У китайцев для этого есть целые предприятия, внешне копируют на 95-99%, простому покупателю отличить невозможно. Самое плохое, когда такую подделку вам продают под видом оригинального Cree T6. Вы будете подключать поддельный по техническим спецификациям оригинального. Подделка имеет характеристики в среднем на 30% хуже. Меньше световой поток, ниже максимальная рабочая температура, ниже энергопотребление. Про обман вы узнаете очень не скоро, он проработает примерно в 5-10 раз меньше настоящего, особенно на двойном токе.

Недавно измерял световой поток своих фонариков на левых Cree производства LatticeBright. Доставал всю плату с драйвером и ставил в фотометрический шар. Получилось 180-200 люмен, у оригинала 280-300лм. Без серьезного оборудования, которое преимущественно есть в лабораториях, вы не сможете измерить, соответственно узнать правду.

Иногда попадаются разогнанные диоды, сила тока на которых на 30%-60% выше номинальной, соответственно и мощность. Недобросовестный производитель, особенно подвально-китайский пользуется тем, что срок службы трудно измерить в часах. Ведь никто не засекает отработанное время, а когда светильник или светодиодный прожектор выйдут из строя продавца уже не найти. Да и искать бессмысленно, срок гарантии на такую продукцию дают всегда меньше периода службы.

Примечание автора: «В сети есть достаточно большое количество информации о питании светодиодной продукции, но когда я готовил материал для этой статьи, нашел большое количество абсурдной информации на сайтах из топа выдачи поисковых систем. При этом наблюдается либо полное отсутствие, либо неправильное восприятие базовых теоретических сведений и понятий.»

Светодиоды - самый эффективный на сегодняшний день из всех распространенных источников света. За эффективностью кроются и проблемы, например высокое требование к стабильности тока, который их питает, плохая переносимость сложных тепловых режимов работы (при повышенной температуре). Отсюда выходит задача решения этих проблем. Давайте разберемся, чем отличаются понятия блок питания и драйвер. Для начала углубимся в теорию.

Источник тока и источник напряжения

Блок питания - это обобщенное названия части электронного устройства или другого электрооборудования, которое осуществляют подачу и регулирование электроэнергии для питания этого оборудования. Может находиться как внутри устройства, так и снаружи, в отдельном корпусе.

Драйвер - обобщенное название специализированного источника, коммутатора или регулятора питания для специфичного электрооборудования.

Различают два основных типа источников питания:

    Источник напряжения.

    Источник тока.

Давайте рассмотрим их отличия.

Источник напряжения - это такой и источник питания напряжение на выходе которого не изменяется при изменении выходного тока.

У идеального источника напряжения внутреннее сопротивление равняется нулю, при этом выходной ток может быть бесконечно большим. В реальности же дело обстоит иначе.

У любого источника напряжения есть внутреннее сопротивление. В связи с этим напряжение может несколько отклоняться от номинального при подключении мощной нагрузки (мощная - малое сопротивление, большой ток потребления), а выходной ток обуславливается его внутренним устройством.

Для реального источника напряжения аварийным режимом работы является режим короткого замыкания. В таком режиме ток резко возрастает, его ограничивает только внутреннее сопротивление источника питания. Если источник питания не имеет защиты от КЗ, то он выйдет из строя

Источник тока - это такой источник питания, ток которого остается заданным независимо от сопротивления подключенной нагрузки.

Так как целью источника тока является поддержание заданного уровня тока. Аварийным режимом работы для него является режим холостого хода.

Если объяснить причину простыми словами, то дело обстоит следующим образом: допустим, вы подключили к источнику тока с номинальным в 1 Ампер нагрузку сопротивлением в 1 Ом, то напряжение на его выходе установится в 1 Вольт. Выделится мощность в 1 Вт.

Если увеличить сопротивление нагрузки, скажем, до 10 Ом, то ток так и будет 1А, а напряжение уже установится на уровне 10В. Значит, выделится 10Вт мощности. И наоборот, если снизить сопротивление до 0.1 Ома, ток будет все равно 1А, а напряжение станет 0.1В.

Холостым ходом называется состояние, когда к выводам источника питания ничего не подключено. Тогда можно сказать, что на холостом ходу сопротивление нагрузки очень большое (бесконечное). Напряжение будет расти до тех пор, пока не потечет ток силой в 1А. На практике, для примера такой ситуации можно привести катушку зажигания автомобиля.

Напряжение на электродах свечи зажигания, когда цепь питания первичной обмотки катушки размыкается, растёт до тех пор, пока его величина не достигнет напряжения пробоя искрового промежутка, после чего через образовавшуюся искру протечет ток и рассеется энергия, накопленная в катушке.

Состояние короткого замыкания для источника тока не является аварийным режимом работы. При коротком замыкании сопротивление нагрузки источника питания стремится к нулю, т.е. оно бесконечно маленькое. Тогда напряжение на выходе источника тока будет соответствующим для протекания заданного тока, а выделяемая мощность ничтожно мала.

Перейдем к практике

Если говорить о современной номенклатуре или названиям, которые даются источникам питания в большей степени маркетологами, а не инженерами, то блоком питания принято называть источник напряжения.

К таким относятся:

    Зарядное устройство для мобильного телефона (в них преобразование величин до достижения необходимого зарядного тока и напряжения осуществляется установленными на плате заряжаемого устройства преобразователями.

    Блок питания для ноутбука.

    Блок питания для светодиодной ленты.

Драйвером называют источник тока. Основное его применение в быту - это питание отдельных и те и другие обычной высокой мощности от 0.5 Вт.

Питание светодиодов

В начале статьи было упомянуто, что у светодиода весьма высокие требования к питанию. Дело в том, что светодиод питается током. Это связано с . Взгляните на неё.

На картинке ВАХ диодов разных цветов:

Такая форма ветви (близка к параболе) обусловлена характеристиками полупроводников и примесей которые в них внесены, а также особенностей pn-перехода. Ток, когда напряжение, приложенное к диоду меньше порогового почти, не растёт, вернее его рост ничтожно мал. Когда напряжение на выводах диода достигает порогового уровня, через диод резко начинает расти ток.

Если ток через резистор растёт линейно и зависит от его сопротивления и приложенного напряжения, то рост тока через диод не подчиняется такому закону. И при увеличении напряжения на 1% ток может возрасти на 100% и больше.

Плюс к этому: у металлов сопротивление увеличивается при росте его температуры, а у полупроводников наоборот - сопротивление падает, а ток начинает расти.

Чтобы узнать причины этого подробнее нужно углубиться в курс “Физические основы электроники” и узнать о типах носителей зарядов, ширине запрещенной зоны и прочих интересных вещах, но делать этого мы не будем, бегло эти вопросы мы рассматривали .

В технических характеристиках пороговое напряжение обозначается, как падение напряжения в прямом смещении, для светодиодов белого свечения обычно около 3-х вольт.

С первого взгляда может показаться, что достаточно на этапе проектировки и производства светильника достаточно подобать и выставить стабильное напряжения на выходе блока питания и всё будет хорошо. На светодиодных лентах так и делают, но их питают от стабилизированных источников питания, к тому же мощность применяемых в лентах светодиодах зачастую* мала, десятые и сотые доли Ватт.

Если такой светодиод питается от драйвера, со стабильным выходным током, то при нагреве светодиода ток через него не возрастет, а останется неизменным, а напряжение на его выводах для этого немного снизится.

А если от блока питания (источника напряжения), после нагрева ток увеличится, от чего нагрев будет еще сильнее.

Есть еще один фактор - характеристики всех светодиодов (как и других элементов) всегда отличаются.

Выбор драйвера: характеристики, подключение

Для правильного выбора драйвера нужно ознакомиться с его техническими характеристиками, основные это:

    Номинальный выходной ток;

    Максимальная мощность;

    Минимальная мощность. Не всегда указывается. Дело в том, некоторые драйвера не запустятся если к ним подключена нагрузка меньше определенной мощности.

Часто в магазинах вместо мощности указывают:

    Номинальный выходной ток;

    Диапазон выходных напряжений в виде (мин.)В…(макс.)В, например 3-15В.

    Количество подключаемых светодиодов, зависит от диапазона напряжений, пишется в виде (мин)…(макс), например 1-3 светодиодов.

Так как ток через все элементы одинаков при последовательном подключении, поэтому к драйверу светодиоды подключаются последовательно.

Параллельно светодиоды нежелательно (скорее нельзя) подключать к драйверу, потому что, падения напряжений на светодиодах могут немного различаться и один будет перегружен, а второй наоборот работать в режиме ниже номинального.

Подключать больше светодиодов, чем определено конструкцией драйвера не рекомендуется. Дело в том, что любой источник питания имеет определенную максимально допустимую мощность, которую нельзя превышать. А при каждом подключенном светодиоде к источнику стабилизированного тока напряжение на его выходах будет возрастать примерно на 3В (если светодиод белый), а мощность будет равняться как обычно произведению тока на напряжение.

Исходя из этого, сделаем выводы, чтобы купить правильный драйвер для светодиодов, нужно определиться с током, который потребляют светодиоды и напряжением, которое на них падает, и по параметрам подобрать драйвер.

Например этот драйвер поддерживает подключение до 12 мощных светодиодов на 1Вт, с током потребления в 0.4А.

Вот такой выдаёт ток в 1.5А и напряжение от 20 до 39В, значит к нему можно подключить, например светодиод на 1.5а, 32-36В и мощностью 50Вт.

Заключение

Драйвер - это один из типов блока питания, рассчитанный на обеспечение светодиодов заданным током. В принципе все равно как называют этот источник питания. Блоками питания называются источники питания для светодиодных лент на 12 или 24 Вольта, они могут выдавать любой ток ниже максимального. Зная правильные названия, вы вряд ли ошибетесь при приобретении товара в магазинах, и вам не придётся его менять.

Осветительные приборы, в которых стоит обычный светодиод, сравнительно недавно стали использоваться для создания искусственного декоративного освещения помещений. Это новое направление зарекомендовало себя, как очень перспективное, широко использующееся не только в интерьерах, но также и для яркой эффектной подсветки архитектурных и ландшафтных объектов. Для того, чтобы потребление энергии было минимальным, а светоотдача максимальной, рекомендуется использовать мощные светодиоды, купить которые в Москве предлагает наша компания.

Какие источники тока стоит купить для мощных светодиодов

Для того, чтобы мощный светодиод работал стабильно и без перебоев, необходимо обеспечить его постоянным питанием через источник тока, которые еще называют драйверами. Устройства предназначены для питания светодиодных цепей и модулей с высоким значением мощности, и работают под постоянной высокой нагрузкой. Источники тока для мощных светодиодов уменьшают значение тока в электросети до заданного значения, тем самым обеспечивается бесперебойное освещение, безопасность эксплуатации и долгий срок использования всей системы.

Источник тока для мощных светодиодов – простой, обычный и небольшой по габаритам прибор, который необходим для того, чтобы обеспечить питание электронных приборов, для которых характерна работа на постоянном токе. Эти устройства поддерживают определенное значение выходного тока и мощности. Источники тока нужны для обеспечения бесперебойной работы мощных светодиодов, прожекторов модулей.

Для источников тока для мощных светодиодных устройств и модулей характерно стабилизированное значение тока на выходе. Источники работают в мощных мультикристальных светодиодных системах, с большими значениями мощности.

Как выбрать и купить источники тока для мощных светодиодов

Блоки питания для светодиодных источников освещения высокой мощности выбираются исходя из определенных параметров:

  • Значение тока на выходе. Источник тока на выходе имеет определенное значение тока, которое является постоянным и не изменяется в процессе эксплуатации. Драйвер может работать и при токе, отличном от допустимого. Если ток будет меньше номинального, то освещение будет не очень ярким. Если же значение тока на выходе будет больше, чем допустимое, то в этом случае освещение будет очень ярким, но оборудование будет перегреваться, за счет чего срок эксплуатации устройства значительно сократится. Именно поэтому не стоит превышать допустимое значение тока на выходе.
  • Максимальное значение мощности на выходе. Оно показывает максимальную нагрузку, которую может выдержать драйвер. Однако не стоит нагружать его до верхнего предельного значения, так как в этом случае высока вероятность перегрева устройства, из-за чего снизится срок эксплуатации.

На сегодняшний день у нас можно найти большой ассортимент драйверов для мощных светодиодов. Во всех этих устройствах значение тока не меняется, изменяется лишь значение напряжения на выходе в зависимости от подключаемой нагрузки. Корпус источника тока для мощных светодиодов может быть выполнен из пластика или алюминия.

Все источники тока, которые купить предлагает наша компании, можно классифицировать по принципу исполнения корпуса:

  • Герметичные. Их применяют для работы на открытой местности или в помещениях с повышенным уровнем влажности и пыли.
  • Негерметичные. Они предназначены для работы в сухих закрытых помещениях.

В настоящее время у нас представлено большой ассортимент различных источников тока. Существуют универсальные драйвера, которые рассчитаны на неопределенное число светодиодов, главное, чтобы мощность источника тока не превышала суммарную мощность всех подключенных светодиодов. Также можно найти источники тока, которые рассчитаны на определенное число диодов.


КПД универсальных источников тока для мощных светодиодов немного меньше, чем у обычных драйверов из-за особенностей их схемы. Источники тока с определенным числом диодов выполнены со встроенной защитой от перегрузок. Но если подключить к ним меньшее число диодов, то, вероятнее всего, защита сработает и система выдаст сообщение об аварии.

При эксплуатации драйвера следует соблюдать некоторые правила, чтобы система нормально работала на протяжении всего срока эксплуатации:

  • Подключение источника тока к питающему напряжению должно происходить непосредственно под нагрузкой.
  • Светодиоды, подключенные к источнику тока, должны иметь достаточное охлаждение, особенно если планируется использовать дополнительный ток.

В нашем магазине работают опытные консультанты, которые подскажут все необходимые параметры для Ваших потребностей, помогут правильно рассчитать мощность устройства для конкретного оборудования и определиться с выбором модели блока питания.

Рассмотрены основные требования к источникам питания для светодиодных светильников, как самых оптимальных с точки зрения эффективности, надежности, экологии. Рассмотрены требования к входному току и возможные пути удовлетворения требований ГОСТ. Рассмотрены требования к выходным параметрам с учетом специфики нагрузки. Предложена топология преобразователя, удовлетворяющая всем рассмотренным требованиям с минимальными материальными затратами.

Замечено, что повышение благосостояния любой цивилизации приводит к увеличению количества потребляемой энергии в разных ее формах. Так было всегда, с самых первобытных племен и по настоящее время, и нет никаких оснований сомневаться в том, что так будет продолжаться и дальше, по крайней мере, в ближайшем будущем. Общий рост потребления энергии распространяется и на электрическую энергию, как на самый удобный вид энергии с точки зрения производства, использования и доставки потребителю, не говоря уже об экологии в местах ее использования. При увеличении потребления сразу же возникают проблемы, связанные с доставкой электроэнергии потребителю. Ограниченная пропускная способность существующих электрических сетей вынуждает искать пути для повышения эффективности передачи и использования электрической энергии.

Известно, что в жилых и непроизводственных зданиях, составляющих львиную долю потребителей, значительная часть от всей потребляемой электроэнергии (около 50%) расходуется на освещение. Поэтому повышение эффективности светильников существенно влияет на общие потери в проводах и на пропускную способность сети. Сравнение характеристик разных типов современных светильников (табл. 1) показывает, что так называемая «лампочка Ильича» – это светильник ХХ века, уже ушедшего в историю. Новый, ХХI век требует применения новых, эффективных решений.


Как видно из таблицы 1, замена традиционных ламп накаливания на люминесцентные лампы и современные светодиоды может сократить затраты энергии на освещение в 4…5 раз. Но уменьшится ли при этом нагрузка на электрическую сеть?

На рисунке 1 представлены осциллограммы тока потребления различных люминесцентных ламп (1а – лампа с пускорегулирующим устройством в цоколе без дросселя, 1б, 1в – лампы с дросселем). Из рисунка видно, что все люминесцентные лампы имеют низкий коэффициент мощности: без дросселя – за счет больших гармонических искажений тока, с дросселем – за счет огромного сдвига по фазе. В результате при равной яркости свечения люминесцентные лампы потребляют значительно меньшую активную мощность, но создают нагрузку на сеть даже большую, чем лампа накаливания равной яркости. Конечно, это позволяет экономить топливо, сжигаемое в печах электростанций, но совершенно не решает проблему доставки электроэнергии потребителю. В результате, в конечном счете все окажутся в убытке: владельцы электрических сетей (при максимальной нагрузке, которую могут выдержать сети, последние будут в состоянии передавать в 2…4 раза меньше активной мощности и, соответственно, приносить меньший доход), производители электроэнергии (генераторы электростанций при том же самом максимально допустимом токе обмоток генераторов будут вырабатывать меньшую полезную мощность) и, в конечном счете, потребители электроэнергии (совершив дополнительные затраты на установку экономичных светильников, потребители не смогут долго радоваться снижению затрат на освещение – электрические компании быстро отреагируют на снижение своих доходов и дружно откликнутся повышением тарифов). Чтобы повысить эффективность доставки электроэнергии, необходимо исключить бесполезный холостой пробег тока и передавать по проводам только активную мощность. Для решения этой задачи при импульсном потреблении тока, а также при ярко выраженном нелинейном или реактивном характере нагрузки необходимо применение одного из множества разновидностей корректоров коэффициента мощности (ККМ). Поскольку ККМ практически невозможно уместить в цоколе от лампы накаливания, простая замена лампы накаливания на более дорогую энергосберегающую люминесцентную лампу с таким же цоколем сократит на некоторое время расходы на освещение (при этом по причинам, изложенным выше, вряд ли дополнительные затраты успеют окупиться), но нисколько не убавит токовую нагрузку на сеть. Кроме того, поскольку сама люминесцентная лампа – вещь довольно громоздкая, да к тому же хрупкая и наполнена ядовитыми парами ртути, становится очевидным преимущество светодиодных светильников, лишенных указанных выше недостатков.

Особенности физических свойств светодиодов определяют специфические требования к источникам питания для светодиодной техники. Кроме того, чтобы действительно уменьшить нагрузку на электрическую сеть, то есть обеспечить высокий коэффициент мощности, источники должны соответствовать определенным требованиям по величине гармоник входного тока.

Проблема низкого коэффициента мощности существует столько же, сколько существуют электрические сети переменного тока. Повышающие и понижающие трансформаторы, электродвигатели переменного тока, включенные в большом количестве в электрическую сеть, создают значительную реактивную составляющую тока, в результате чего при довольно большом токе в проводах полезная мощность составляет малую часть от того, что можно было бы получить при чисто активной нагрузке. Действительно, при синусоидальном напряжении в сети в случае активной нагрузки ток в сети пропорционален напряжению:

Полезная мощность при этом составляет:

Коэффициент мощности, определяемый как отношение полезной мощности к произведению среднеквадратичных значений тока и напряжения, в данном случае равен:

При наличии реактивной составляющей, вызванной индуктивным характером нагрузки, ток отстает по фазе от напряжения:

Полезная мощность и коэффициент мощности при этом равны соответственно:


Итак, при синусоидальном токе коэффициент мощности равен пресловутому «косинусу фи», с которым должен быть хорошо знаком каждый, кто хорошо учился в средней школе. Однако отождествлять эти два понятия нельзя, поскольку коэффициент мощности может отличаться от 100% не только из-за сдвига по фазе между током и напряжением, но и из-за больших гармонических искажений тока. Если посмотреть с помощью осциллографа форму напряжения в любой электрической розетке, то сейчас никого уже не удивляет видимая невооруженным глазом особенность – верхушка синуса как бы срезана. Это объясняется большим распространением источников питания для персональных компьютеров, телевизоров и прочей бытовой техники, содержащих выпрямитель с накопительным конденсатором на своем входе и не содержащих при этом ККМ. Такие источники потребляют ток короткими импульсами в момент достижения сетевым напряжением своего амплитудного значения. В остальную часть периода сети потребления тока нет. Естественно, пиковое и среднеквадратичное значения тока в сети оказываются при этом значительно выше, чем в случае потребления в течение всего периода.

Для наглядности рассмотрим аппроксимацию тока потребления таких устройств в виде короткого прямоугольного импульса (рис. 2), точно совпадающего по фазе с напряжением сети, и будем предполагать, что коэффициент заполнения γ , то есть отношение длительности импульса к периоду его следования (в нашем случае – к половине периода сетевого напряжения) намного меньше единицы:

Поскольку импульс короткий и совпадает по времени с верхушкой синусоиды, мгновенное значение напряжения сети в течение всего импульса можно считать неизменным и равным амплитудному значению. При данном предположении потребляемая мощность и среднеквадратичное значение тока равны соответственно:

Коэффициент мощности при этом равен:

Нетрудно убедиться, что, например, при коэффициенте заполнения 1/8 коэффициент мощности уже равен 0,5 и будет тем меньше, чем меньше относительная длительность импульса. Если со сдвигом по фазе метод борьбы давно известен и везде применяется – включение в сеть конденсатора соответствующей емкости создает равную по величине и противоположную по знаку реактивную составляющую, которая компенсирует действие индуктивной нагрузки и уменьшает сдвиг по фазе до нуля, то с импульсным потреблением тока должен бороться сам потребитель, скомпенсировать его параллельным включением каких-либо дополнительных устройств нельзя. По своему действию на сеть импульсная нагрузка значительно хуже индуктивной, так как лишает сети переменного тока очевидного преимущества – отсутствия потерь в нулевом проводе. Если при сбалансированной нагрузке в трехфазной сети токи отстают по фазе от напряжения на один и тот же угол, они все равно взаимно компенсируются, и ток в нулевом проводе, равен нулю, потери выделяются только в фазных проводах, то при импульсном потреблении картина совсем иная. Импульсы тока потребления в каждой фазе не пересекаются по времени с импульсами в других фазах, и никакой взаимной компенсации токов в нулевом проводе не происходит. Напротив, в нулевом проводе складываются потери от тока каждой фазы, и его уже нельзя делать тонким. Напротив, при такой нагрузке его следует делать более мощным, чем фазные провода, потери в трехфазных сетях при этом удваиваются, а о передаче электроэнергии на большие расстояния с помощью трехпроводных линий электропередач без нулевого провода вообще не может быть и речи.

В нашей стране только в последнее время становится заметным влияние импульсного потребления и вызванные им неудобства. Значительно заметно это будет в ближайшем будущем в связи с централизованно организованным переходом от ламп накаливания к энергосберегающим лампам. Немногие захотят добровольно приобрести лампу, в 10…20 раз более дорогую, про которую известно, что она потребляет в 4…5 раз меньше электроэнергии (что похоже на правду и привлекает покупателя), и про которую говорят, что она прослужит во столько же раз дольше по сравнению с лампой накаливания, во сколько раз она дороже (в чем воспитанный нашей рекламой покупатель имеет полное право сомневаться). Гораздо охотнее будут раскупаться дешевые китайские лампы без ККМ, наводнившие наш рынок, и по мере дальнейшего введения запретов на производство ламп накаливания есть все основания ожидать, что мы в полной мере увидим все прелести импульсного потребления.

В более развитых странах с этой проблемой столкнулись несколько раньше, особенно остро она возникла в США, где стандартная сеть имеет напряжение 110 В. В Европе давно уже действуют нормы IEC 555-2 и множество произведенных от него стандартов, регламентирующих величину гармоник входного тока для устройств, питающихся от сети переменного тока. В России соответствующий стандарт ГОСТ Р 51317.3.2, содержащий аутентичный текст международного стандарта МЭК 61000‑3‑2‑(1995‑03), введен в действие 24 декабря 1999 г. В соответствии с этим стандартом все потребители до 16 А на фазу разделены на 4 класса со своими нормами на величину гармоник входного тока (по 40-ю гармонику включительно). К классу B относится портативное оборудование, к классу C относятся осветительное оборудование. Остальное оборудование разделено между классами A и D, одним из критериев деления является форма входного тока. Если форма тока укладывается в определенный стандартом шаблон в течение более 95% времени, то оборудование относится к классу D с более жесткими нормами, в котором допустимая величина гармоник входного тока зависит от входной мощности. Класс А устанавливает нормы на абсолютную величину гармоник входного тока независимо от входной мощности.

Для осветительного оборудования (класс С) установлены нормы на относительную величину гармоник входного тока. В соответствии со стандартом, вторая гармоника входного тока должна быть не более 2% от величины первой гармоники, третья – не более (30 PF )%, где PF – коэффициент мощности изделия, пятая – 10%, седьмая – 7%, девятая –5%. Нормы на величину нечетных гармоник с 11 по 39 включительно установлены на уровне 3% от величины первой гармоники. Чтобы соответствовать требованиям стандарта, в состав оборудования включают дополнительный функциональный узел, называемый корректором коэффициента мощности (ККМ). Поскольку основная масса единиц осветительного оборудования на основе светодиодов не будет потреблять более 100 Вт, источник питания для светодиодов должен быть достаточно дешевый, что накладывает довольно жесткие ограничения на стоимость ККМ. Фактически, форма входного тока у источника питания для светодиодов может очень сильно отличаться от синусоидальной, главное, чтобы гармоники входного тока соответствовали требованиям ГОСТ, а стоимость самого ККМ была минимальной.

Наиболее популярным видом ККМ в маломощных источниках питания являются пассивные ККМ, основным преимуществом которых является их простота и низкая стоимость. В качестве примера пассивного ККМ на рисунке 3 представлена наиболее популярная диодно-кондесаторная схема.


Главный принцип действия пассивных корректоров – «растянуть» форму тока за пределы установленного в стандарте шаблона, таким образом, переводя преобразователь из класса D в класс A с менее жесткими нормами на величину гармоник входного тока (рисунок 4).


Как видно из рис. 4, пассивный ККМ обеспечивает форму тока, не укладывающуюся в шаблон для класса D, следовательно, оборудование может быть отнесено к классу А. Поскольку нормы в классе A установлены в абсолютных величинах независимо от величины входной мощности (нормы класса А соответствуют нормам класса D для мощности 600 Вт), такой тип корректоров вполне приемлем для маломощных преобразователей. Осветительное оборудование, однако, относится к классу C, в котором норма на гармоники входного тока установлена в относительных единицах по отношению к величине основной гармоники. Представленная на рисунке 3 форма тока значительно превышает нормы, установленные для класса C. По этой причине дешевые пассивные корректоры коэффициента мощности не могут быть использованы в осветительной аппаратуре. Для удовлетворения требований стандарта по гармоникам входного тока в нашем случае необходимо применение активного ККМ.

Классический ККМ в виде отдельного узла или отдельного модуля выполняется по схеме повышающего преобразователя (рис.5). Данный ККМ позволяет удовлетворить самые жесткие требования стандарта, но его применение существенно повышает стоимость изделия, что особенно заметно, если мощность источника не превышает 100…200 Вт, т.е. практически не подходят для подавляющего большинства светильников.

В поисках путей удешевления ККМ в 90-х годах прошлого века появились публикации, в которых предлагалось объединить функции силовых ключей ККМ и последующего преобразователя в одном силовом ключе (рис. 6), дополнив схему диодами и переведя ККМ и преобразователь в режим разрывных токов (так называемое «новое семейство»). Экономия одного ключа и его схемы управления достигается за счет повышенных токов и напряжения на основных силовых элементах схемы. Особенно неприемлемой оказалась зависимость напряжения на высоковольтном накопительном конденсаторе от изменения мощности нагрузки. Из-за этих недостатков «новое семейство» не получило практического применения.

В последнее время появились также публикации о резонансных преобразователях с ККМ с двумя накопительными конденсаторами и несколькими магнитосвязанными обмотками трансдросселя, в которых ток перетекает резонансным образом из одной накопительной емкости в другую и затем, через выходную обмотку трансдросселя, в нагрузку. В этих преобразователях используется один ключ, а входной дроссель ККМ и изолирующий трансформатор объединены на общем сердечнике в один моточный компонент. Данная топология из-за множества магнитных связей практически не поддается аналитическому описанию, попытки публикаций грешат множеством неточностей. Из публикаций видно, что преобразователь работает, и видно, что начальные предположения при анализе приводят к противоречию работы преобразователя и результатам анализа, вытекающих из сделанных предположений. Применение режима разрывных токов и резонансного принципа работы подразумевает повышенные требования по току к накопительным конденсаторам, однако, если производитель правильно подберет компоненты и сумеет обеспечить высокую повторяемость при серийном производстве, данная топология вполне имеет право на практическое применение.

Альтернативой ККМ являются преобразователи, устроенные таким образом, что их входной ток приблизительно пропорционален входному напряжению. Из таких преобразователей наиболее подходящим для питания светодиодов, с точки зрения авторов, является вариант преобразователя без накопительного конденсатора на первичной стороне. На рисунке 7 представлена версия на основе обратноходового преобразователя.

Преобразователь работает в граничном режиме. Функцию накопительного конденсатора выполняют емкости на выходе преобразователя. Повышенные требования по току конденсаторов здесь окупаются простотой и низкой ценой, а наличие небольшой пульсации выходного напряжения на удвоенной частоте сети вполне допустимо при питании осветительного оборудования. Расчетная форма тока представлена на рис. 8. Теоретически коэффициент мощности такого преобразователя равен 0,99, при этом расчетный состав гармоник входного тока с большим запасом удовлетворяет требованиям класса С.

Специфика нагрузки при определяет специфические требования к выходной части преобразователей. В основном, по своим выходным параметрам источники питания для светодиодного освещения не должны сильно отличаться от стандартных коммерческих преобразователей. Отличительными чертами являются:

1. Не всегда требуется гальваническая развязка между входными и выходными цепями.

2. Появилась новая опция – dimming.

3. Поскольку светодиоды питаются током, а не напряжением, на рынке требуются преобразователи – источники тока. Источники напряжения также востребованы для питания устройств, содержащих несколько «гирлянд» со своими регуляторами.

4. Более мягкие требования к пульсациям выходного напряжения, особенно на высокой частоте.

Требования по пульсациям на удвоенной частоте сети определяются санитарными нормами СанПиН 2.2.1/2.1.1.1278‑03, устанавливающими для обширного класса помещений жилых и общественных зданий нормы на коэффициент пульсации освещенности в пределах 10…20%. При освещении помещений, для которых коэффициент пульсации освещенности не нормируется, следует помнить, что при питании светодиодов импульсным током их эффективность заметно снижается. В этом можно убедиться на простом примере. Для типового светодиода зависимость светового потока от тока имеет ярко выраженный логарифмический характер. В качестве примера рассмотрим типовую характеристику диода CLN6A (Рис. 9).

При питании светодиода током 600 мА световой поток больше потока при токе 300 мА приблизительно в 1,5 раза. Следовательно, при питании светодиода импульсным током со скважностью 0,5 и средним значением 300 мА световой поток будет составлять только 0,75 от величины потока при питании постоянным током с тем же средним значением. Это говорит о том, что пульсации напряжения на выходе должны быть в разумных пределах и не следует пытаться обойтись без конденсаторов при построении преобразователя напряжения, причем, принимая во внимание специфику нагрузки, а именно весьма высокую крутизну вольтамперной характеристики светодиодов в рабочей точке, емкость конденсаторов должна быть достаточно большой, чтобы удержать пульсацию выходного напряжения в разумных пределах. Если пульсации тока на частоте коммутации можно значительно уменьшить с помощью дросселя, включенного последовательно с нагрузкой, то на частоте сети требуемая величина дросселя может оказаться сравнимой с размерами преобразователя вместе с нагрузкой. Исходя из вышеизложенного, любому человеку, которого можно назвать разумным, ясно, что светодиоды следует соединять последовательно: во-первых, при последовательном соединении их дифференциальные сопротивления складываются, что облегчает требования к пульсациям выходного напряжения, во-вторых, при равной мощности нагрузки выходные конденсаторы намного эффективнее работают на высоких напряжениях – можно обойтись одним или двумя конденсаторами, в то время, как на низких напряжениях требуется целая батарея таких же по объему конденсаторов. Преимущества высокого выходного напряжения особенно заметны в преобразователях, в которых выходные конденсаторы несут большую токовую нагрузку

На основе топологии без накопительного конденсатора на первичной стороне в ЗАО «ММП-Ирбис» был разработан ряд источников питания для светодиодов с выходной мощностью до 100 Вт. На рис. 10 представлена осциллограмма входного тока источника с максимальной выходной мощностью 40 Вт (номинальный ток нагрузки 0,12 А), полученная при следующих условиях:

  • входное напряжение 220,6 В (действ.)
  • выходное напряжение 300 В
  • ток нагрузки 114 мА
  • входной ток 0,191 А (действ.)
  • потребляемая мощность 40 Вт.

Хотя форма входного тока заметно отличается от синусоидальной, относительная величина гармоник входного тока с большим запасом удовлетворяет нормам, установленным для осветительного оборудования (Рис. 11). Значение коэффициента мощности, полученное по результатам измерений, составляет 0,95; коэффициент полезного действия равен 85,5%.

Выводы

По совокупности требований по экономичности, долговечности, экологическим свойствам наиболее предпочтительными выглядят светильники на основе светодиодов. С учетом специфики применения, источники питания для светодиодного освещения должны удовлетворять определенным требованиям как по качеству входного тока, так и по выходным характеристикам. Кроме того, источники питания должны содержать минимальное количество электронных компонентов, чтобы сохранить стоимость светильника в разумных пределах. Топология обратноходового AC/DC преобразователя без накопительного конденсатора на первичной стороне удовлетворяет всем требованиям и выглядит оптимальной для построения светодиодных светильников с потребляемой мощностью до 100 Вт.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту